天然产物研究与开发 ›› 2024, Vol. 36 ›› Issue (8): 1307-1319.doi: 10.16333/j.1001-6880.2024.8.004

• 研究论文 • 上一篇    下一篇

水杨梅根的化学成分及α-葡萄糖苷酶抑制活性研究

李   茹1,2,陈雪林1,王寒蕾1,2,张振男1,2,赵   霞1,张   昆1,2,张玉梅1*   

  1. 1中国科学院西双版纳热带植物园 中国科学院热带植物资源可持续利用重点实验室,昆明 650223;2中国科学院大学,北京 100049
  • 出版日期:2024-08-28 发布日期:2024-08-29
  • 基金资助:
    云南省重大科技专项(202102AA100014);云南省省级环保专项(E1YN051K)

Chemical constituents from roots of Adina rubella and their α-glucosidase inhibitory activity

LI Ru1,2,CHEN Xue-lin1,WANG Han-lei1,2,ZHANG Zhen-nan1,2,ZHAO Xia1,ZHANG Ku1,2,ZHANG Yu-mei1*   

  1. 1CAS Key Laboratory of Tropical Plant Resource and Sustainable Use,Xishuangbanna Tropical Botanical Garden,Chinese  Academy of Sciences,Kunming 650223,China;2University of Chinese Academy of Sciences,Beijing 100049,China
  • Online:2024-08-28 Published:2024-08-29

摘要:

对水杨梅(Adina rubella)根的化学成分及其α-葡萄糖苷酶抑制活性进行研究。通过硅胶、Sephadex LH-20和半制备HPLC等多种色谱分离技术,从水杨梅根的乙酸乙酯部位中分离得到25个化合物,并运用现代波谱学方法鉴定为奎诺酸(1)、奎诺酸-3-O-β-D-吡喃葡萄糖苷(2)、奎诺酸-3-O-β-D-岩藻糖苷(3)、奎诺酸-3-O-β-D-吡喃葡萄糖-28-O-β-D-吡喃葡萄糖酯(4)、gongganoside C(5)、gongganoside A(6)、奎诺酸-3-O-β-D-岩藻糖-28-O-β-D-吡喃葡萄糖酯(7)、奎诺酸-3-O-β-D-奎诺糖-28-O-β-D-吡喃葡萄糖酯(8)、齐墩果酸(9)、芥子醛(10)、松柏醛(11)、3,5-O-二咖啡酰基奎宁酸甲酯(12)、3,4-O-二咖啡酰基奎宁酸甲酯(13)、methyl-4,5-di-caffeoyl-quinate(14)、大花葵苷(15)、undulatoside A(16)、5,7-dihydroxy-2-methylchromone-7-O-β-D-apiosyl-(1→6)-O-β-D-glucoside(17)、马钱苷(18)、马钱苷酸(19)、谷甾醇(20)、6′-O-乙酰基-β-胡萝卜苷(21)、胡萝卜苷(22)、丁香醛(23)、3,4,5-trimethoxyphenyl-1-O-β-D-apiofuranosyl-(1′′→6′)-O-β-D-glucopyranoside(24)、栗柄醇(25)。化合物2~810~141617192123~25为首次从水杨梅根中分离得到。α-葡萄糖苷酶抑制活性测试结果显示,化合物1213具有显著的α-葡萄糖苷酶抑制活性,IC50值分别为8.83 ± 0.54、8.36 ± 1.01 μmol/L。酶动力学分析表明化合物1213α-葡萄糖苷酶的抑制类型为混合竞争性抑制,随后分子对接及分子动力学模拟结果表明化合物1213α-葡萄糖苷酶具有较强的亲和力,对接结合能分别为 -10.08、-10.65 kcal/mol,化合物1213具有显著的α-葡萄糖苷酶抑制活性,可能为水杨梅根乙酸乙酯部位发挥α-葡萄糖苷酶抑制活性的物质基础。

关键词: 水杨梅, 化学成分, 降糖, α-葡萄糖苷酶, 分子对接

Abstract:

This study aims to investigate the chemical components of Adina rubella and evaluate its α-glucosidase inhibitory activity.The constituents from the ethyl acetate fraction of the root of A. rubella were separated and purified by chromatographic techniques including column chromatography of silica gel,Sephadex LH-20 and HPLC.Their structures were mainly elucidated by NMR and MS spectroscopic techniques.Twenty-five compounds were isolated and purified,and use modern wave spectroscopy methods to identify their structures as quinovic acid (1),quinovic acid 3-O-β-D-glucopyranoside (2),quinovic acid 3-O-β-D-fucopyranoside (3),quinovic acid 3-O-β-D-glucopyranosyl-28-O-β-D-glucopyranosyl ester (4),gongganoside C (5),gongganoside A (6),quinovic acid 3-O-β-D-fucopyranosyl-28-O-β-D-glucopyranosyl ester (7),quinovic acid 3-O-β-D-quinovopyranosyl-28-O-β-D-glucopyranosyl ester (8),oleanolic acid (9),sinapic aldehyde (10),coniferaldehyde (11),3,5-di-O-caffeoylquinic methyl ester (12),3,4-di-O-caffeoylquinic methyl ester (13),methyl 4,5-di-caffeoyl-quinate (14),grandifloroside (15),undulatoside A (16),5,7-dihydroxy-2-methylchromone-7-O-β-D-apiosyl-(1→6)-O-β-D-glucoside (17),loganin (18),loganic acid (19),sitosterol (20),6′-O-acetyl-β-daucosterol (21),daucosterol (22),syringaldehyde (23),3,4,5-trimethoxyphenyl-1-O-β-D-apiofuranosyl-(1′′→6′)-O-β-D-glucopyranoside (24),lucidol (25).Among which compounds 2-8,10-14,16,17,19,21,23-25 were isolated from A. rubella for the first time.The results of α-glucosidase inhibition activities showed that compounds 12 and 13 exhibited significant inhibitory activities against α-glucosidase,with IC50 values of 8.83 ± 0.54,8.36 ± 1.01 μmol/L,respectively.Enzyme kinetic analysis showed that the type of inhibition of α-glucosidase by compounds 12 and 13 was mixed competitive inhibition,followed by molecular docking and molecular dynamics simulation results showed that compounds 12 and 13 have superior binding capacities with α-glucosidase (binding energy:-10.08 and -10.65 kcal/mol).Compounds 12 and 13 showed significant α-glucosidase inhibitory activities,and they might be the material basis for the α-glucosidase inhibitory activity of eathy lacetata extract from the root of A. rubella.

Key words: Adina rubella, chemical constituents, hypoglycemic activity, α-glucosidase, molecular docking

中图分类号:  R284.1