天然产物研究与开发 ›› 2023, Vol. 35 ›› Issue (8): 1416-1421.doi: 10.16333/j.1001-6880.2023.8.014

• 开发研究 • 上一篇    下一篇

基于BP-ANN结合CRITIC法优化当归尾提取工艺参数

徐志伟1,毕映燕1,冯芸梅1,边   娜2,王宝才1,李季文1,杜伟锋3*   

  1. 1甘肃省中医院,兰州 730050;2兰州市城关区白银路街道卫生社区卫生服务中心,兰州 730030;3浙江中医药大学中药炮制技术研究中心,杭州 311401
  • 出版日期:2023-08-28 发布日期:2023-08-30
  • 基金资助:
    国家重点研发计划(2018YFC1707001);国家中药标准化项目(ZYBZH-H-ZY-45);国家中医药行业科研专项(201507002) ;中华中医药学会青年人才托举工程项目(QNRC2-C12)

Optimization of extraction process for the tail of Angelica sinensis based on CRITIC combined with BP-ANN

XU Zhi-wei1,BI Ying-yan1, FENG Yun-mei1,BIAN Na2,WANG Bao-cai1,LI Ji-wen1,DU Wei-feng3*   

  1. 1Gansu Provincial Hospital of TCM,Lanzhou 730050,China;2Baiyin Road Streer Community Sanitary Service Center,Lanzhou 730030,China;3Research Center of Processing Technology for Chinese Materia Medica,Zhejiang Chinese Medical University, Hangzhou 311401,China
  • Online:2023-08-28 Published:2023-08-30

摘要: 通过反向传播神经网络(BP-ANN)结合CRITIC法多指标优化当归尾的提取工艺。以提取次数、料液比、提取时间为考察因素,用CRITIC法计算阿魏酸、绿原酸、欧前胡素、藁本内酯、当归尾药材干膏率的多指标综合评分作为评价指标,先采用正交设计,再建立反向传播神经网络模型,通过网络训练,预测当归尾的最优提取工艺。优化得到的当归尾最优提取工艺为加9.6倍量水,提取时间67 min,提取3次,检测样本的网络预测值和实际测量值的相对误差小于1%。通过相关数学模型分析和预测所得的当归尾提取工艺稳定可行,可有效提高当归尾中有效成分的提取效率。

关键词: 反向传播神经网络, CRITIC法, 当归尾, 多指标

Abstract:

To optimize the extraction process of the tail of Angelica sinensis by BP neural network (BP-ANN) combined with orthogonal experiment.The extraction frequency,the solid-liquid ratio and the extraction time were taken as factors.CRITIC (criteria importance though intercrieria correlation) was used to calculate the comprehensive scores of the multi-indicators of the content and four active components of chlorogenic acid,ferulic acid,imperatorin and butenyl phthalide.Using comprehe-nsive score as an evaluation indicator,the BP neural network model was established by orthogonal experiment design,and the optimal extraction process of the tail of A. sinensis was predicted through network training.The optimized extraction process of the tail of  A. sinensis was carried out by adding 9.6 times of water,extracting 3 times and 67 minute each times.The relative error between the network predicted value and the actual measured value of the test sample was less than 1%.The established mathematical model can analyze and predict the extraction process of the tail of A. sinensis. The obtained process is stable and feasible,and can effectively extract the active ingredients in the tail of A. sinensis.

Key words: BP neural network, CRITIC, the tail of Angelica sinensis, multiple indicators

中图分类号:  R932